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ON THE APPROXIMATION OF LOGARITHMS OF
ALGEBRAIC NUMBERS

By K. MAHLER, F.R.S.; The University, Manchester
(Recetved 19 May 1952—Revised 15 September 1952)

A new identity is given by means of which infinitely many algebraic functions approximating
the logarithmic function In x are obtained. On substituting numerical algebraic values for the
variable, a lower bound for the distance of its logarithm from variable algebraic numbers is found.
As a further application, it is proved that the fractional part of the number e? is greater than a=40¢
for every sufficiently large positive integer a.

A A

After earlier and weaker results by Mordukhay-Boltowskoy (1923), Siegel (1929) and
Popken (1929), I proved in 1931 (Mahler 1932) that Inx, for rational x==0, =1, is not a
Liouville number and even not a U-number, and I determined a measure of transcendency
for such logarithms. Up to now this measure has not been improved, although Fel’dman
(1951) recently proved a very general related inequality for the logarithms of arbitrary
algebraic numbers.

In this paper, I once more study the question of approximations to In x. The new work is
based on a simple system of identities I found a year ago. These are of the form

OF

3 4u(s) (im0t = Ry() (h=0,1,...,m), ()

where the 4’s are polynomials of degree not greater than » with integral coefficients and of
determinant o(x—1)mDn  (;0),

while the R’s have at x =1 a zero of order at least (m—+1)n. From the integral defining
R, (x) one easily derives upper bounds for | 4,,(x) | and | R,(x) |.

Let now {0, =1, be an algebraic number which need not be a constant. On allowing
m and n to vary, the identities (A) become infinitely many approximative algebraic equa-
tions for In{ with algebraic coeflicients. By means of these, it is proved in Chapter 2 that
Ing us not a U-number. In this way my old result has for the first time been extended to
arbitrary algebraic numbers. Moreover, the new proof is much simpler than the old one.
It is based on an idea due to Siegel (1929). It may be mentioned that the measure of
transcendency now obtained does not contain any unknown numerical constants.

In Chapter 3 this measure is further improved under the restrictive assumption that
both £ and the approximations to In{ are rational numbers. As an application, it is proved

) ¢

S

SOCIETY

that |2a_ea1|>123_62|

Jor all pairs of positive integers a and a,.
In the last chapter, I finally apply the identities (A) to prove that

et —[e?]>a~40a, Inf—[Inf]> -0l

when both ¢ and f are sufficiently large positive integers; here [x] denotes the integral
part of x.

OF
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372 K. MAHLER ON THE APPROXIMATION OF
The formulae (A) may also be used to show that
|ay+a,e+...+a,em|>e ",

when m is a positive integer tending to infinity, ay, 4y, ..., a,, are m bounded integers not all
zero, and ¢>>1 does not depend on the a’s or on m. However, this result is very weak and it
would therefore be of great interest to replace it by-a better one.

CHAPTER 1. THE APPROXIMATION FUNCTIONS
1. Let m and n be two positive integers and x40 and z two complex variables. We

define x* by x7 = ezl

where In x stands for the principal value of the logarithm which is real when x is a positive
number. We further denote by N=T[1,2,...,7]

the least common multiple of 1,2, ..., 7, and put, for shortness,
P = m! Nm(nl)m*1,
Finally, let @(z) be the polynomial
Q(z) ={z(z+1) ... (z-+n) L.
We study in this chapter the integrals
Zhyztn

R,(x) = 2771 ¢ Q)

extended over the circle C in the complex z-plane of centre z = 0 and arbitrary radius p
greater than n, described in the positive direction. In the next two sections, R,(x) will be
evaluated in two different ways. The resulting identity will lead us to the approximation
formulae needed in the following chapters.

dz (h=0,1,...,m),

2. The rational function (z)~! has at z = oo a zero of order (m+1) (n+ 1), and its poles
are at points of absolute value not greater than n. The function possesses therefore a Laurent
expansion .

Q)= 2 ¢z

k=(m+1)(n+1)

convergent for | z | >n. The other factor, z%x?*", of the integrand can be developed into the

power series lnx
Zhyztn — xn Z ( ) K+ﬁ,

which converges for all z. Hence, on multiplying these two series and integrating the
product series term by term, we obtain for R,(x) the convergent development

0 lnx)l{ h—1
— Py P )
h(x) xx (m+1)(n+1) (K h— )'

(h=0,1,...,m).

It shows that R,(x) vanishes at ¥ = 1 to the exact order
(m+1) (n-+1)—h—1=(m+1)n,

because In x has at this point a zero of the first order.


http://rsta.royalsocietypublishing.org/

A A

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

A \
I

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LOGARITHMS OF ALGEBRAIC NUMBERS 373

3. By the residue theorem, R,(x) may also be written as

Ry(x) =P Ago Y

where 7, denotes the residue of the integrand

thz+n
Q@)
at the pole z = —A. This residue is evaluated as follows.
At z = —), Q(z) has a zero of order m+-1. Hence §,(z) = 2 has at z = —A7 a pole of

Q(2)
order not greater than m--1, and the other poles of this function lie at least at a distance 1
from this point. Therefore §,(z) can be developed into a Laurent series

[eo]

Si(2) = 2 YAP(z4A)

. Kk=—m—1
convergent inside the circle of centre z = —A and radius 1. On the other hand,
xETN — gn—A z (lnx) ( ‘I“/I)
k=0 k!

for all values of z. Hence, on multiplying these two series term by term, the residue r, is

found to be equal to
un q A 2 A (1._nx)

—K‘" >

k!

whence R, (x) =P % é()y@,;’_')l x”"‘(l—n—x—)K (h=10,1,...,m).

k=0 k!

We therefore put  4,,(x) = 7 Z yan xn=2 (b k=0,1,...,m),

and have Ry(x) = 3 Ay(x) (Inx)f (h=0,1,...,m)
k=0
identically in x.

4. The functions 4,,(x) are polynomials in «, their terms of highest degree being

77(0 , h) x'n

This term can be obtained more explicitly as follows.
Write the Laurent series for Sy(z) = Q(z)~! at z = 0 in the simpler form

A= 3
Then, from Q(z) = {z(z+1) .. z+n)}m+1
Yem-1 = (nd) 07D,
and the coeflicients y*# of the more general function S,(z) = z45,(z) are given by
(0‘ if —m—1<k<<—m+hb—2,

(0,h)
Ve e if k=—mth—1.

46-2
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374 K. MAHLER ON THE APPROXIMATION OF

It is therefore obvious that 4,,(x) is of smaller degree than n if A+k>=m+-1; that it is of
exact degree n and has the highest term

P

7 (n!)~n+D o

if h+k = m; and that its degree does not exceed n if A+A<m—1.

5. The last remarks enable us to evaluate the determinant

Agg(x)  Agi(x) oo Agp(x)
D(x) = Alf)(x) Al'l(x) Alrr.z(x)
Apo®) Apa(x) o Apn(®)

If, to start with, the elements of D(x) are replaced by their highest terms
P
and the terms of lower degree omitted, we obtain a triangular determinant with elements

0 below the diagonal /2 + £ = m, hence equal to

m+1(pl\—(m+1)2
:FH{ '7,(0m k)xn}_¢P1'2(7'1°) — _y(m+Dyn

Therefore D(x) itself is of the form

Pm+l(n!)-—(m+l)2
C1lelm!

D(x) = xtm+e i terms in lower powers of x.

To obtain these lower terms, add to the first column of D(x) the second column times
In x, the third column times (In x)2, etc., finally, the last column times (In ) ™. By theidentities

3 A0 () = R(x) (b =0,1,..m)

the new first column consists then of the elements

Ry(x), Ri(x), ..., R,(x),
all of which, by [2], vanish at x = 1 to at least the order (m+-1) #. Since the other elements

of D(x) are regular at x = 1, the determinant is then necessarily divisible by (x—1)m+Dn,
By the form of its highest term, D(x) must then be identical with

Pm+1(n!)—(m+1)2
112!0...m!

D(x) = (x—1)(m+Ln,

Hence; in particular, D(x)=+=0 if x<1,
a result we shall frequently apply in later chapters.

6. We next investigate the arithmetical form of the coefficients y4?, in

P n
App(x) = Eago Yy an=A,
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LOGARITHMS OF ALGEBRAIC NUMBERS 375

‘These coeflicients were originally obtained from the Laurent expansion
S(D) = Q)T = 3 yan(zA)-

Now, for A = 0,1,...,n, Q(z)~! can be written as

Q)™ = ()7 Tz +0) — T+ ),
and so also as & .

Q) = (— 1) D=t ) I (=224 T (1
p=1 H

y=1
Further, by the definition of N as the least common multiple of 1,2, ..., n, the quotients

:%Vand %f, where p=1,2,..,landv=1,2,...,n—A4,

Z—}—/l)"m“l

14

are integers; there exist therefore integral coefficients oV such that

A —-m—1n—2A -m-1 )
i (1-—N t) H(l +Nt) — 3 ap,
Y2 1 k=0

p=1 y=1
Hence, from the product for Q(z)~1,

Q)™ = (DD Qa1 S aON*(z Ay,
k=0
On multiplying this series by
‘ h
2= (e )= = 3 (1) (=2 (242,
k=0
it is evident that the coeflicients Y can be written as

P = (=1 D Q=) 3 () (— s N,
1

where the summation extends over all pairs of integers «,, «, satisfying
0<k <h, £,=0, Kk, +K, = k+m-+1, hence also k,<x+m-+1.
. l n\m+1
In this formula A (n—2)}m=1 = (pl)=-m-1 (/1)
is a rational number the denominator of which divides (n!)”+1. It follows therefore that
(ﬂ') m+1 Nk+m+1 ),(/\, h)
* K
is a rational integer. In particular, all products
r hk=0,1,...,m

nl)m+1 Nm=k A, b ( J PRI )

( ) Jah =1 /1 0.1
are integers, hence even more all products

hk=0,1,....,m
1\m+1 ATm ~ (A, k) ) ’» ’
et (M),

Since, for £ = 0,1, ...,m, k! is a divisor of m!, we obtain then the final result that all the
(m+1)2 polynomials
| n
Ay, (%) = %:Nm(nz)mﬁgo YAR xR (k= 0,1, ..., m)

have rational integral cogfficients. This property will prove of importance in the later applica-
tions.
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376 K. MAHLER ON THE APPROXIMATION OF
7. If p(x) = po+p1x+pax2+...+p,«" is a polynomial with arbitrary real or complex
coeflicients, then we write
[p@) [ =max (| o, | £1s -5 | £:1)

and call | p(x) | the keight of p(x). Our next aim is to find an estimate for the height of 4,,(x).
This requires obtaining an upper bound for the Laurent coefficients yA-# in

$)(2) =2Q(2) = 3 yAP(zHA)

K=—m—1
when k =—1,—2, ..., —m—1.
By Cauchy’s theorem, an L f zhdz
“ 2mi) ¢, Q(z) (z+A)<+1°
where C, may be chosen as the circle of centre z = —A and radius %, described in the positive

direction. Since 0<<A<7n and 0<<{A<<m, we have on this circle,

|z|<A+34<n+1, hence |z'|<(n+1)m,

further | (z424)~*"1| <1,
because k+1 = —k<0in A, ().
NCXt, A m+1 n—A m+1
Q@) =TI+ =) Erom T (E+0+))"
p=1 v=1

so that for all points on (),

0@ ={fre—b]"" @ {To—b]" = (G o ()

p=

(2)! (2n—210)! (2n)!  n! | 1 m+1
- { (2n)! n!n! /Il(n—/l)!n'22"+(2”"2’0“} ’
2n\~! (n\ (2n m+1
i 1 9-2n-1
or, what is the same, | Q(z) |>{(2A) (/1) ( n)n.2 } .
2n\~1 (n\ (2n
Put, for the moment, g, = (2/1) (/1) ( n) A=0,1,...,n).
P B <221,
Then ¢ = q,-, and q;“ = 2n—;;1~1 .
1 >1 A
Therefore 90>9> >0y and  ¢,>q, 1> =G
h w000 a0 () ()2
whence {905 915 -5 9n) = Jtim = 2[1n] ERAYIA
. n n 2n 2n
Further, since (A)<([%n]), (2/1)<(n)
n 1 2 (n 2"
and ([%n]) il /\;, (/1) rEN]

forallA = 0,1, ...,n, we have

n 2n
q/l>q{%n]> ([%n]> >7l+ 1°
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LOGARITHMS OF ALGEBRAIC NUMBERS 3717
Hence, when z is on the contour C),

l Q |>{ ?:172!2—211—1}””_1 — (n+ 1)—m—l2—(m+1)(n+l)(n!)m+l.

Therefore, from the integral,
I 7()t s h) l <___( + 1) {(n’i‘ 1) m—1 2—(m+1)(n+1)(n!)m+l}—1 — %(n’i‘ 1)2m+1 2(m+1)(n+l)(n!)—m—1

p

and so k'y(lkh)l < 3m! Nm(n+1)2m+1 Qs D+D),

m!
— |Z!_Nm(n|)m+l 7(_)&];2)1

whence, finally,
Ay (x) | <m! Nm(n4-1)2m+12miD@+h - (h k= 0,1,...,m).
In the notation of majorants, this may also be written as
Ay (%) <Am! Nm(n+1)2m+1 2+ DD (] 4 x4 4-x7).

8. We conclude this chapter by determlmng an upper bound for R,(x). In the integral
for this function, R(s) — e
2771 ¢ Q@)

C was assumed to be a circle in the z-plane of centre z = 0 and arbitrary radius p>n,
described in the positive direction. In order to simplify the final result, we assume, from
now on, that x==1 and

m+1>2|Inx]|,
_(m+1)n
and we fix p by = Thnx]
so that p=2n>n and p—n=ip.
On the contour C, | 28 | <pm, | x#tr | <elptmilnxd

since 0 hA<m. Further, on this contour,

1Q(2) | = |2+ (1 J%) (1 +§-)(1 +g) " >p(”l+1)("+1){(1-—%) (1 —%)...(1 —g)}m“.

e (=09 -, 2

wd (1) (1, 2g) (12 <o ($ 4 ) <enp($ 1)

o (aln 1) n(n+1)
= exp (2(p_n>)<exp( ? ),
((z) admits on C the lower bound

Q) |Zpme 0o vexp (2 (me1) (n-1)).

It is therefore obvious from the integral that

-1
I R () l <2£i”277/0/0m elo+n)linx| {p(m+l)(n+1)exp (*/%2 (m+ 1) (n+ 1))} .
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378 K. MAHLER ON THE APPROXIMATION OF
Here exp (-—g (m+ 1) (n+ 1)) — e—(n+1)llnxl’
whence

th(x) I<Ppm+1e(ﬂ+n)llnx|p~(m+l)(n+l) em+D|ny] — P e@ntDilnxl gpllngl p=(m+Dn,

On replacing now P and p by their expressions in m, n and x, we obtain the following upper
bound for R,(x):

I Rh(x> l <m| Nm(nl)m+l e(2n+l)|lnx1 e(m-l—l)n (

b

@:_l—l) n)—(m+l)n
[Inx |
; | Nm(pl)m+1 a@n+1)In| ellnxl)(m+l)n
that is, | R, (x) | <m! Nm(nl)m+le ((er-l)n
9. The two inequalities

Ay (x) LImI Nm(n4-1)2m+ 1 Qme D@D (] oy - x7)

and | Ry(x) | <t NGty e e ( 12 LY0",

(m+1)n
proved in the last section, can be put into a more convenient form, if we make use of the

elementary inequality*
Y 4 Y n!gen% nten

and of the inequality of Rosser?
N =[L2,..,n] <2
both of which hold for all positive integers.
The inequality for | 4,,(x) | takes then the form

Ay (x) <5m! 28mn(p 4 1)2m+1 2mi D@D g |- - x7),
which may also be written as
Ay (x) <m!l 2m=in(pg4-1)2m+1 ((/32)0m+Dn (] 4y +x7).
Similarly, the upper bound for R,(x) becomes

>

| R,(x) | <m!2imn(e Jn)m+1plmthn g=(mtDn e(utDilnx| (EI Inx L)(m“)"

(m+1)n
and this may be put in the form

’ 8%llnxl (m+1)n

| 9—in m+1 a@u+1)|Iny) (&1 7777 1

|R,(x) |<m! 2 (e fn)m e (m+1 ) .

10. The main results of this chapter may now be formulated as follows.

TueoREM 1. Let x be a real or complex number different from 0 and 1; let Inx be the principal value
of the logarithm; and let m and n be two positive integers of which the first one satisfies the inequality

m—+1=2|lnx|.

* The sequence a;, dy, g, ... defined by
a,=nlntter (n=1,2,3,..)
is easily seen to be decreasing; therefore a, <a;=e.

1 In his paper (1941) Rosser gives the result that (In N)/z assumes its maximum at #n = 113 and that this
maximum is less than 1-0389. On the other hand, 2 In 2 is greater than 1-:0397.
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LOGARITHMS OF ALGEBRAIC NUMBERS 379

Then there exist (m—+1)2 polynomials
Ap(x)  (hk=0,1,...,m)
in x of degree not greater than n, with the following properties:
7 .
(a) The (.Zetermmant | Aue(%) |1, k=0,1, .,
does not vanish.

(b) Every polynomial A,,(x) has integral coefficients such that
Ap(x) <m! 2m=in(p 4 1)2mF1(/32)(mDn (] x4 .. 4x7).
(¢) The m+-1 functions .
Ry(x) =3 A, (x) (Inx)f (h=0,1,...,m)
satisfy the inequalities 0

E (m+1)n
th(x) ]<m! 2—%n(eJn)m+l e(2n+1)|1nx| (8 llnx l)

m-+1

CHAPTER 2. THE LOGARITHMS OF ALGEBRAIC NUMBERS
11. The next investigations make use of the following lemma:
THEOREM 2. Let Slx) =fo+fix+ ...—i—f¢x¢, where  f4>0,
be an irreducible polynomial with integral coefficients, and let
g) gl) (AR gqﬁ—-]
be the roots of the equation f(x) = 0. If
g(x) = gotgxt...+g ¥
is a polynomial with integral coefficients for which g(&) =0, then
| (&) |={(g+1)¥ 3% | flx) |7 | g(x) |#~ 1} 1.
Proof. The hypothesis g(£) =0 implies that also
g(&)+0, ..., g(€;1) =0,
hence that the product vy =178 (&) -8(&s-1)

does not vanish. This product is symmetrical in §,&;, ...,§;_; and of degree ¢ in each of
these roots. It is therefore a rational integer, whence

, l7|=1.
Since, for [ =1,2,...,4—1,
|g&) 1<) | A+1&]+..+]&)<[gB) ] (1+]&]),

y admits the upper bound

$—1 v
1</ |2@) g1 (T +&D)

Now, in the equation for the £’s,

Ji)+—1x+...+x¢ =0,
Jo Ty
the coefficients are in absolute value not greater than

S(x)

5

VoL. 245. A. 47
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380 K. MAHLER ON THE APPROXIMATION OF
Therefore, by a result of Siegel*,
$-1
(HIENTT0 -+ ED < (@03,

and so even more qﬁ(l+|§,|)<(¢+l)3¢~———@)—l.
=1 . ¢
Hence 1<yl <fy18® [Te6 1+ ((9+1) 3¢_@j>“l)"’,

whence the assertion.

12. Let ¢ be a real or complex algebraic number different from 0 and 1, and let

J(x%) = fotfixt...+fyx?, where f,>0,
be an irreducible polynomial with integral coefficients of which £ is a zero. Denote by
7=In¢
the principal value of the logarithm of { as defined in § 1. We consider a linear form
r=aytan+...+a,n"

in the g+1 powers 1,7,7% ...,7* of y with integral coeflicients a,,a, ..., a, not all zero.

Our aim is to obtain a lower bound for | 7| in terms of ¢, the degree #, and the height

a= max(l ay ,’ lal la k) Ia,u l)
of r.
As in the first chapter, let m and n be two positive integers; they will be fixed later, but

we assume from now on that m=p m1=2|p].

The m—p+1 linear forms in 1,7, %2 ..., 7™ derived from 7:

r=aytan+ayn*+...+a,n%
m=  an+tar+..+a,_ 9" +a,p,

- - . —p+1
= Gon" P ay I L a g,

are linearly independent because the matrix Q of their coefficients contains a non-zero
minor of order m—u+1. For let v be the largest number for which a,4-0; then the minor
of Q which has g, as its upper left-hand corner element is triangular and no elements in its
main diagonal vanish.

By the first chapter, the m--1 linear forms

Ry(&) = Apo(§) + A () n+ ... + 4 (E) 1™ (h=0,1,...,m)

in 1,7,%% ...,7™ are likewise independent because their determinant is not zero. It is then
possible to select x of these forms, the forms

Ry(©), Ry, - Ry,

say, where I<h <hy<...<h,<m,
such that the m -1 linear forms
By 1y e Tl Ry (E), RL(E), .. R,(E)
* Compare the proof of Hilfssatz I in Siegel’s paper (1921).
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LOGARITHMS OF ALGEBRAIC NUMBERS 381
are also independent. Hence, if A(x) denotes the determinant
a, a, a, a, 0
0 a, a, a1 a, 0
Ax) = 0 0 0 a, a a, ,
Apo(x)  Apa(x)  App(x) oo oo ol Ay ()
Ay o(%) Apa(x)  Apo(x) o Ay (%)
then A({) is the determinant of these linear forms, and therefore
A(g) +0.

13. The first m —u+-1 rows of A(x) consist of integers, while the last # rows are formed by
polynomials in x at most of degree n and with integral coefficients. Hence A(x) is itself a
polynomial in x of degree not greater than un with integral coefficients. An upper bound for
these coefficients is obtained by the following estimation.

By theorem 1,

Ay (%) KA +x+...+x"), where A =m!2min(n4-1)2n+1( /32)m+Dn,
Therefore, the product of any x of the polynomials 4,,(x) is majorized by
A1 +x+ ... Fxm)~,
Here (1+x-+...+x")# can be written as
(Lba o a)# = jo -ty a+ oo g, %00,
where the j’s are integers and positive. On putting x = 1, we see that
Jotgit A, = (n+1)%,
and so (I4x4... 2 <L (n+1)# (L+x+ ... x#).
Now A(x) consists of (m+1)! terms, each of which is clearly majorized by the expression
amFTLAR(1 x4 .. )R
Hence A(x) L (m+1)lam 1 Ar(n+1)# (1454 ... +x#),
or, say, Alx) <A am™ P (1 x4 ... atn),
where 4, = (m+1)! A*(n+1)# = (m-+1) (m!)#r1 2m=inp(p 4 1)20m+Dp ( /32)(m+Dun,
In just the same way, we can majorize the cofactors of the elements of A(x). In particular,

denote by DQox), Qu(x), .oy O, (x), Vi), ..., F,(x)

Iz
the cofactors of the m 4 1 successive elements of the first column of A(x). A similar calculation
to the last leads to

D,(x) <dyam (1 +x+...4+x) (1=0,1,...,m—p),
where, for shortness,
Ay = (ml)#+1 2010 (1) 20D ( J39) e D
and also to Wi(x) <Azam w1+ x4-... FaDn) - (7=1,2,...,u4),

where Ay = (m!)#2m=10E=D (g 4 1) Xm+ D@D (/32)m+ D=,
47-2
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The determinant A(x) can be expressed in terms of these cofactors. Multiply the second,
third, ..., (m+1)st column of A(x) by », 7?2, ..., 5™, respectively, and add to the first column.
The new first column is then

Ty My ey TR R, (x), Ry (x), o R, (%),
and therefore, identically in x,
, mp
M) =7 3 7 0i(x) + 5 Ry (x) ¥
14. Put now x = { in the last identity and write

S=1@) 1 =max([fol, [/i], - [ /5]

Then, first, from theorem 2,

| A©) | {3+ 1) 3o0nf wn(d am s )91},

or |A(g) | = A5 a~m=rtD@-D),
where
A4 = (¢+ 1);m Sugn /m(m+1)¢~1 (m!)(ﬂ+l)(¢—l) 2(m—%n)//«(¢—1)(n_|_ 1)2(m+l),u(¢—l) (J32)(m+l)ﬂ(¢—l)n.
Secondly, | ®,(€) | <dpamr(L+[E]+ ...+ E]m),

| F5(8) <4 a’""‘“(1+|§l+-~-+lé"l("‘””)~

Here <|E|<Sf+1,

Sf1 + 1
because the equation Jotfi6+ . +fy8f =0

for £ may be written as Jy€= (f¢§ ! @22+ +§{ 1)

and so either | £]<1 or

EI<IfEI<SUE[+E[2+.) lllgl , whence |E|<f+1.

A similar proof holds for the lower bound. Therefore, since f+1<2f,

ISV
/

LR E |+ [E <L (fH 1) o (S 1) L —gmirpm,

and, in the same way,  1+|&|+ ...+ |£|@ DrL 2w Dntlfu=Dn,
Hence the inequalities for ®;(§) and ¥;(§) take the simpler form,

| D,(E) <2 ifind,anr,

l lIJ’J(g) I <2(,u—1)n+{f(,u—l)nA3am~/l,+l.

Thirdly, the logarithm # = In{ was defined as the principal value, so that by the bounds
for &, 7| <{(n | [)2-Ha3<{(In (f4+ 1)) 242
Since In (f+ 1) < f, this means that
[7|<{f2HmP< 34
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Si 7 \2)* X
mce {1—}*(@) ; <10,

7 admits the further bound given by

w

- 23 2)1 .
7 1<(1n (f+1)):1+(m) } <(1n (f+1)){1+<ﬂl-§) } <10°In(f+1).
The first of these two estimations implies, in particular, that

m> | m- m—p+1l _
S S )= UL o gymen < gmmr i,
i=0 i=0 f+2

because f+4 3 <2( f+2). Therefore, by the bound for ®,(§),

m—pu )
3 i (6) 1<A5am—ﬂ,
i=0
where, for shortness, we have put
A5 —_ 22m+,u(n~2)+2fm+,u(n-—l)A2’
that is, Ay = (m1)#+1 @miu+ D= plint20+2 frotu(r=1) (| 1) 20m+ Dpe (/32) e+ Dpn,
Next, by theorem 1,

| Ry(E) | <m!27in(e Jn)m+1 eorDinl (Jgjgrl 7]

)(m+ n

The two estimates for 7 imply then that

t10t (m+1n
| R, (&) | <m! 27t (e Jn)m+let/@nt]) (8 10 ln(f-|_1)) + ,

m-+1

hence that

1

§ R0 W0 | < dgamr
P
with the abbreviation

Ae =M. M! 2“?"(6 Jn) m+1 e4f(2n+1) (

w}))"”“’" 2D+ 1fG=ng

m—+1
In explicit form,

A6 —_ ,um! 2—in(e Jn)m+l e4f(2n+l)(

8 10%In (f—{—l))“”“’"
m-+1

X Q=D n L= Dn (g Qm=im (u=1) (- 1) A+ D=1 ( /32)(mt D@D
or, after some simplification,
A6 —_ lu(m!)/ﬁ-l 2m(/t-1)*§n(,u+2)+1(e Jn) m+1 e4f(2n+ 1?]‘(/@-1)11

% (n+ 1)2(m+1)(,u-1)(

Q¥+iu=) 5 In ( f-1)\(m+Dn
m—+1 ) ’

) mep
The equation AE) =S 10 E)+ ﬁl Ry, (£) ¥;(©)
i= ji=
leads therefore finally to the inequality
Azla—(m—ﬂ+l)(¢—l)<Asam—,u | r I —|—A6(l”’_/‘+l,

that is, 1< A, Azam=r+D9=1 | 7| 1 A, Agalm=-n+D9,
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384 K. MAHLER ON THE APPROXIMATION OF
Here, after some simplification,
A4A5 - (¢+ 1)/m 3ﬂ¢nfm+ﬂ(2n—1>(m+ 1)¢~1 (m!)</‘“)¢ (n—l— 1)2(m+1)/t¢
4 X Qm=in)pup+pn—2)+2(m+1) (J32)(m+l)ﬂ¢n
and A Adg = u($+1)#n 3rbnfCu=Dn(m 4 1)8=1 (m!) @+ (g4 1) Am+Dp-1)

o—}+iud 5% In <f+ 1) (m+1n
m-1 ) )

X (€ /n) ™+ edf @t gm=tnup+ pn—m-n+1 (
15. Assume from now oh that

m+1=50f>50, n=30In(m+1).
Then, first, by In (f+1) </, _

7] <100 (f+1) <10f<h(m+1)
and so the condition m-+1=2[Ing]|
from theorem 1 is automatically satisfied. Secondly,

n=30In(m+41)>301n50>100

and also n>30Inf.
Thirdly, if ¢ assumes all positive values, then (In¢)/f assumes its maximum at ¢ = e, and
therefore In: 1

kel
! e

Since u>=1, ¢ =1, we obtain then the following estimates:

1 g 1 11
{ﬂ}ﬂ¢(m+l)n<e w (m+1)n<ee 50007

ol"'

>

1 1 1
{(¢ + l)ﬂn 3/A¢n};¢(m+l)n< {6ﬂ¢n}/¢¢(m+1>n — 6m< 65

L 1,2 Inf 2Inf fF 1,11
{fm+,u(2n——1)}/¢¢(m+l)n<fnTm+1 —en  f mtl < e30 e25,

2 11
{‘ f(2,ll:~ l)n}/x.gb(ni%—l)n < szTi < 6;55’

1 - In(m+1) 1 1
{(m+ 1)¢—-1}/A¢(m+l)n < e{m+Dn < e90%30 — 61500,

1 1 2in(m+l) 1
{(m!) @+ D }upm+ D { (ym)(u+ D $ludmt Dn ¢ " <el’,

1 . 2In(n+1) 2In101
{(n_}_1>2(m+l),u¢}/4¢lm+l)n —e 7 <e 100 "

1 2In101

{(n-t1)200 D= DY TV < ¢ 100
1 lT,llnn 1 lrlnloo
.{(e\/n)m+l},u¢(m+l)n<en 2n <CIOO 100 ,

1 12/n 6
{e4f(2n + 1)}/4¢<m+ Da < e(m+l)n < 625,

1 1 3 3
{2 m—3n) pp -+ u(n—2)+2(m-+ 1)},u¢(m+ Dn < {2m,u¢+2(m+ 1)}p¢(m+ Dn <o 2100’

1

1 1 1
{Q(m—:%n) pPp+pun—m—n+ 1}/¢¢(m+l)n < {2m,u¢},u¢(m+l)n L on < 2100
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These estimates imply that
1 1,1 1 1 2miol 3

4,4 <(65oeso 2ecl500els g 100 Q100 /39)pgm+1n
and
1 11 1 1 M 1 Inl00 6 1 (2”%5§1n(f—|—1))(’”“)"
m—+1 )
A 51mple numerical calculation gives then

A, A, <el998ppim+Dn 4 A <ezz47,u¢(m+1)n(\/ ) In (f+1)
4445 s m+1

eirdIn +1 (m+1)n
Ay Ay < e2ndm+Dn (\/< )m+1(f ))

)(m+l)n

and, a fortiori,

Here, in the second formula, V2 <e, 2<el.

This formula implies therefore that
1
A dg<? (

S+ In (f41)\(m+Dn
m-+1 )

Since both @ and x are positive integers, we find then that
A, A alm=1+Dé=1 < 2u(m+Dn gm+ D

1 e3,u¢+lln (f+ 1) (m+1)n
(m=pt+1)$ ~— (m+1)¢
and A, A44a <3 ( —— ) a .

Now it was proved in the last section that
1<A, Agatm=r+0¢=1 | r| 4 A4, Agalm=r+D9,
so that, by the formulae just proved, we have

1 < e28(m+Dn gm+ D | 1 | +1 (33M¢+11n (f+ 1))(m+1)n
2 m—+1

am+Dg.

If here the second term on the right-hand side does not exceed 1, the first term necessarily
does so, and a lower bound for 7 follows at once. We therefore finally choose m by

m+1 = max ([e*#*1In (f+1)]+1, 50f)
and afterwards z by n = max (30 In (m+1), 1{1_0 —{—1)

This choice is permitted because the former restrictions on m and » are evidently satisfied,

From it, 341 In (f4-1)

m-+1>e+n (f41), 1 <e M <1
and n>l—r—l—a, ert>aq.
Hence g
%(63”¢+;11:1L(1f+ 1))('"“)" dm+Dé ; (Z___izzii }E 8;1" i;)(mﬂ)" m+D¢ %(é%)(mﬂw %,

and the second term is in fact less than }. Therefore, as already said, we find the following

lower bound for 7: || > (e2ubn+Dn g1 )1
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Our discussion has thus led to this general result:
TuEOREM 3. Let & be a real or complex algebraic number different from 0 and 1, and let
ﬂ)—l—flx—[—...+f¢x¢ =0 (f¢>0)
be an irreducible equation with integral coefficients for £; write
F=max (| fyl [Als oo 1D
Denote by 7 =1n¢
the principal value of the logarithm of &, and by
r=ayt+an+...+a,n"
where a=max (g, |a], ..., |a,[) =1,
a polynomial in n with integral coefficients not all zero. Put
m = max ([e*4*1]In (f+1)], 50/—1),

and n = max (SOln (m—}—l),[lz—a:l~|~1).

Then | 7| > §(e¥na)~(mtDe,
and therefore n is transcendental.

Remark. The hypothesis that 7 = log £ is the principal value of the logarithm is not essential
in this theorem, and a similar result can be proved for each other value.

16. Theorem 3 establishes a lower bound for r uniformly in the four parameters f, ¢, a
and x. On specializing these, we obtain results that are of interest in themselves.
Assume, first, that £ and 5, hence also f and ¢, are fixed, but that # is so large that

edup+l> 5Qf

“In(f+1)
and that, with this choice of y, a satisfies the inequality
a>=(m+-1)30%,
Then m1 = [e#9 n (f1-1)]+1<edt 1 In (f+1)+1
and n:[l_flﬁ:l+1<1£§+1’
M H

and the bound for r implies that
I 7 ] > %(62/443) —{etd+1In(f+1)+1} ¢

In terms of my old classification of transcendental numbers*, 7 = In{ cannot then be
a U-number, but is either an S-number or a 7T-number, and furthermore

w, (1) <3(e**!In (f+1) +1) 4.
There is no difficulty in improving this inequality slightly to
0,(n) = O(e’) as pu—o0;
here § may be any constant greater than £(In 32).

* See my paper (1932, §1).
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LOGARITHMS OF ALGEBRAIC NUMBERS 387
The inequality thus proved for w () generalizes an old result of mine (1932, Satz 5)
which had, until now, only been proved for the logarithms of rational numbers.

17. The estimate for r given in theorem 3 is reasonably sharp when «a tends to infinity
while ¢, fand g are fixed ; it is very much less good when these last three parameters are also
allowed to increase indefinitely.

For assume, as a second application, that both x and ¢ are unbounded, but that fand a
remain fixed. Then, finally,

m-+1 = [e*¢ 1 In(f+1)+1], n=30In(m+1)
and therefore | r , >12_(660/41n[e4“¢+11n(f+l)+1] a)—[e4”¢+11n(f+l)+1]¢,
whence | 7| > e—0uPgz e,

For constant ¢, this inequality is contained in one by Fel’dman (1951) that is very much

sharper.
As a third application, assume that only fincreases while the other three parameters are
fixed. Then the theorem leads to 7| >e-outa,

18. As a final application, let { and { be two real algebraic numbers satisfying the
inequalities

E>1, (>o0.
By Lindemann’s theorem, gr—e¥t 40
for any two positive integers # and ». We shall improve this inequality by replacing it by
a lower bound for |Gk |
in terms of « and v.
If, first, fle®<) or fe®>2,
then | |l |[>led =g or |f—et|> 1>,

respectively, hence in either case,
| £~ | > F max (&, e1).
Assume therefore, secondly, that Fl<fre <.
Then min (&, e%) =L max (&, e*t),
and we deduce from the mean value theorem of the differential calculus that

gu — ev(‘;

= > 1 u evf) >1 u_evf),
uInf—ot min (£, e%) >4 max (£, %)

Let, as before, § be a root of the irreducible equation

JotSixt A fyxt =0 (f3>0)
and put 7= 1ng, fzmax(’fol,IfII,...,|f¢]).
Denote further by Sotgixt...+g/ =0 (g,>0)

an irreducible equation for { with integral coeflicients, and write
g=max (&, &l &)

Vor. 245. A. 48
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388 K. MAHLER ON THE APPROXIMATION OF

The number z { then satisfies the equation
oW +gut x4 g x) = 0.

By the result proved in § 16, there exist two positive numbers ¢, and ¢,, independent of u
and v, such that
| o0+ gy .. gyuty? | >eyfmax (u,0));

this follows on identifying Uy Ay Gy, ey 4,
Wlth ¢> ng&, &1 uzﬂ&'“l, te g'//urﬁ,
respectively, because then

a=max(|a |, [a], ..., |¢,]) <g{max (u,v)}.

Denote by {,{), ..., {;_; the conjugates of {, hence byzg, %Cl, cees ggy,,_l the conjugates

of 2 £. Then, identically in x,
oW +gruwV x+ gl = gy (ux—0) (ux—0fy) ... (ux—vg, ),
and the inequality for 7 may be written as
8y | (g —v8) (un—v§,) .. (un—0vg, ) | = e {max (u,0)} .
Here every linear factor un—vly, ey up—0g,_y

is of absolute value not larger than ¢; max («,v), where ¢;>0 does not depend on « and .
The last inequality implies therefore that

| uy —v{ | =2¢,{max (u,v)}~%,
where ¢, >0 and ¢; > 0 likewise are independent of # and v, whence
| §¥— e | >c, max (£, e**) {max (u,v)} 5.

It follows that there exists to every positive number ¢ a positive number y = y(¢) in-
dependent of # and v such that for all positive integral values of these variables,

|0 —ett | >yfmax (&, )}
From this inequality we deduce at once that the lower bound

M, eb) = inf |gr—et]|
u,v 2,3,...

is attained and is positive. Itis further clear that for any ¢ there are at most a finite number
of pairs of positive integers %, v such that

| v —et | <.

Finally, when ¢ tends to infinity, the number N(f) of integral pairs «, v satisfying this in-
equality has the property that N@) = 0((In1)?)
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CHAPTER 3. THE LOGARITHMS OF RATIONAL NUMBERS

19. In this chapter the estimations that led to theorem 3 are repeated, this time, however,
under the restrictive assumption that £ is a rational number and that only rational approxi-
mations of In§ are considered.

Let £ be the rational number £ S
7
where f and f; are two positive integers such that
| f>h=1
so that = =2, 1<é<f, o<Iné<Inf

Denote by a = ;> 0, a, >0, ..., a,,>0 a system of m+1 integers and put
a
=0, A, = (lng)’“——z’C (k=1,2,...,m).

Further, write A=max ([, |, [ A], -oes [ A0 ]);

our next aim is to determine a lower bound for A.
20. The identities .
Ry() = 3 Ayl€) (&) (h=0,1,...,m)

lead immediately to the relations
1 m m
2 2 Ap() = Ry (&) — X Ay (E) A (B =0,1,...,m).
k=0 E=0
Here the sums by=fr S A E)a, (h=0,1,...,m)
£=0 ‘

assume integral values, and since D(&) =0,
at least one of them is different from zero. There is then an index % such that
b,-0 and therefore |b,|>1,

and so, with this choice of 4,

(@) <R |+md_max (| 4,6 ). (1
Denote now by «, f, y three positive constants to be selected later; in particular, let
=2,
From now on, we assume that m = [alnf] (2)
and : n=zmax [fIn (m+1),y1n (n41), 2]. (3)

The condition for m implies that
m+1=>2Inf>2In¢§,
so that theorem 1 may be applied; hence
| ) | <md 2mn(a 1)1 (J32)ne0n (1)

and | R, (£) | <m!27M(e Jn):h+1 e(2n+1)1ng(i7(;lst)l_l;1_§)(m+1)n !

48-2
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390 K. MAHLER ON THE APPROXIMATION OF

Here, from the inequality in § 9,
ml — (m+1)! _(m+1)mtlem
T om1 T J(m+1)

Further 14+ < (n+1) &
and frEn = fr,  frEl fatl
We find therefore that L
| | 48 | < % gm=in(y|-1)2m+2 ( /32)m+Dngn,
whence
Sem_max (| 4(6) )< 5 (3) (1) (03 Js2ymeon
X - . (m+)n
and that | R,(&) |<(’”j(1nz—+l)e g-infe fn)m1 gone1 (Jfﬁ 1;15) b

(m+1)n

whence ST R, g),\J( +1) {(m_}_l)\/n}m+l(~/(8)1nf) fan,

21. These inequalities can be further simplified. First, since m>1 and n>2,
27ine o2 3 e_ 1

Jm DS 2 S
m 2\™
Secondly, let k(m) = NCES)) (E) .
The logarithmic derivative
dlng(m) 1 1 2 mt2
dm  m 2(m+1)+lne ~ 2m(m+1) 0-3068.....

is positive for m<2 and negative for m>3, because it is a decreasing function of m and

dInx(m)
dm

5 3
24 10<0

m=3

Hence, when m runs over the positive integers, «(m) attains its maximum either at m = 2
or at m = 3, whence

k(m) <max ( 8

e2/3’
It is then clear, by n>2, that we always have
27dm 2™ 1
J(m+1) (E) )
The inequalities above imply therefore that

2ftm max ([ 41(€) ) <{(m+1) (n1)%pm+1 (/32)0mDn fn

,,,,,

and 2/t | Ry (8) | <{(m+1) Jn}m+1( mz:rllf)(m“)nf -

1
2)<1 for m=1,2,3,....

and so (1) takes the simple form

§<{(m+ 1) Jnjmt (Jf,ff?f)”"“’ S ALY (A1) (1) 21 (/32)mebnfn (4)
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22. The hypothesis (2) implies that

Yt /(8 Inf_J8
m+1>alnf, f<e*, 1 .

Next, we assumed as part of (3) that n>>2; let us now make the stronger hypothesis that
n=6. Then
In(m+1)_ In(n+1) 2+%,1

Inf
{(m+1) Joym*1fontl < (e 2n +(2+n) F)m+Dn (g @ +/3+2'y)(m+1)n

In(m+1) (-t Inf 1,1,2
and {(m+ 1) (n+ 1)2}m+1fn — (C n n m+1)(m+l)n<(e<x ﬁ y)(m+1)n
and therefore (4) gives the relation
1s 1 1
2 o 2)/ {\(m+1)n 1,1,2
()T e e (5)

We shall now try to fix zn as a function of @ and m such that

13,1,

60 2 (m+bHn
(e -———“”8) <§, | (A)

1,12
hence, by (5), that also A>{(ex BTy J32)miDn g)-1, (B)

If (A) is to hold, we must have
13,

o> e““ 27 J8.
It is now easily seen that this inequality can be satisfied by taking

a=10, f=3.
For this choice implies that

m-+1>10In2>6-9, hence m-+1>7,

and n>3In7>58, hence n>6,
as required. Also y may now be chosen as
-8
Y ~ In7’
because ln(n‘___ﬁ—i—_l) is a decreasing function of #>>6, and so
6 oo
= In ( =6.
n 1n7ln (n4+1) if n=6
13,1, 1
o B 2y /8
Therefore —*a—i— = e~ 05507.. et
1,1,2
as asserted, and also e 7J32 = eZ8148... —¢3,
We deduce therefore from (A) and (B) that, if
ei‘(m+l)n> a, (a)
then A> (e3m+hng)-1, (b)

48-3
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23. The inequality () is equivalent to
| 2Ilna
SEn

This condition, and the earlier conditions (3) for 7, are all satisfied if nis fixed by the equation

7 = max ([3ln (m+1)]+1, %]4—1) .
Hence the following result has been obtained: ‘
THEOREM 4. Let f and f, be two integers such that f>,>1 and let
m = [10Inf].

If a is a positive integer, if ay, a, ..., a,, are non-negative integers, and if further

2Ina
. ’ L
th ( 1 J_r) _ﬁlg) Hm+n g) -1,
en kﬂlr,r;;a.).(”m (nf1 p > (e a)

It is not difficult to deduce from this theorem a less precise but simpler one involving only
the rational approximations to In ( f/f;). Denote by a,/a, where a>1 and a,>0, a rational
approximation to In( f/f;) satisfying the inequality

%<21nf;

it is obvious that this condition is satisfied as soon as a,/a is sufficiently near to In ( f/f;.) We
use the fact that in ¥

ko gk foap\ k2 [ AR g\
- - o) 2
) ) = Ong=2) 2 0m7) ()
the second factor on the right-hand side is in absolute value not greater than

ké:(lnf)kﬂk_l (2Inf)* = (Inf)E-1 (1-+2+22+...+251) <2k(Inf) k-1,

Hence, for k=1,2,...,m,

k k
lni) —(ﬂ) <2m (Inf)m-! lni—ﬁt.
(mf) =(3) |<2n (np)m 72
Apply now the last theorem with the fractions
4 4 ar
a’ a’ M a b
a,a™'  alqm? ar
replaced by P g mo

and the denominator a replaced by the denominator a™, respectively. It is obvious that the
theorem remains true if the value of 7 is increased. We therefore obtain the following result.
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THEOREM 5. Let f and f, a and a,, be four integers satisfying the inequalities

a
f=H21, a=1, a>0, 1<2nf,

and let m=[10Inf], n=max([3ln(m+1)]+1,[2lna]+1).
Then ‘lni—ﬁ >{2m(Inf)m-1 edm+Dn gmi=1,
fi a
24. As an application of the last theorem, let us study the expression
O =|fe—fren],
which may also be written as O =f2]1—e|,
where, for shortness, A=In J—C—fl—l.
fioa
Suppose, first | ] >1 . hence | ad | >1
2T ~ 242’ ~ 24’
L 1 2a+1 -L 2a
2a — = 2a
and theretore |l—e‘“"[>1—e““"'>1—e—%’>1— 2a__ 1
= = 2a+1 2a+1’°
VA 1
whence ®>2a+1 if [/l]>2a2.
Assume, secondly, that
1 1 1
[A] <5 hence that |ad| <§5<§.
It is then not possible that %> 2Inf,
because this inequality implies that
_|mf_ = 1
[A] = lnfl p >21Inf lnfl ——ln(]ffl)>ln2>2>2a2.

So, by theorem 5, we have necessarily
|A|>%, where &= {2m(Inf)m1edm+thngmi=1,
Further, by the mean-value theorem of the differential calculus,
l—e? =qale @,
where 7 lies between 0 and A, so that |
e-er el > e 1
Therefore, finally, O = fe|ad| o> fead i [A]<go
25. Let, in particular,

f=2, fi=1, ®=|20—en|, /1=1n2—%.
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394 K. MAHLER ON THE APPROXIMATION OF

We shall determine the minimum M = M(2,e) of ® when « and ¢, run over all pairs of
positive integers.
Since |23 —e?| = 0-6109 ..., = asay,

this minimum cannot be greater than «. So it only remains to decide whether ® can assume
values less than « for positive integers «, a;.

If, first 1
> 5 l /l l 2@’
2(1
>
then (= a1’
and therefore O=2>q,
as is easily proved by complete induction on a.
Let, secondly, 1
[l <gg
so that  D>201g9.

Here, by theorem 5,
m=[10In2] =6, [3In(m+1)]4+1=6, n=max(6,[2Ina]+1),

and therefore
n=[2lna]+1<2na+1 if «>13, ie. if [2lna]>5.

Further 9=>{28(In 2)5 e3*7CIna+D 461 — {96(]n 2)5 €21 ¢48} -1,
Since 26(In 2)5 < e?,
® satisfies then the inequality

O>2¢le g4, =¢(a)say, if a>13.

Here ¢(a) is an increasing function of a if
dingla) _10-47-
da a” 7

thus certainly if ¢>>512. Since
B(512) = 2511 e=24512747 = 288 e~24> 1 >q,
we find therefore that - D> if ax=512.

It follows that any possible solution of
d<a

belongs to a value of @ less than 512; moreover,

a, 1
—— <53
a

l’ll: 2a2

In

Therefore, by the theory of continued fractions, ,/a is one of the finite set of convergents

g _1 2 7 9 6l 102 253
a 1> 3’ 10° 13> 88’ 277’ 365
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of the continued fraction
BTN IR IR TR TN

for In2. The table
|20 —el| =0-718...>q,
|28 —e?| =aq,
|20 —e7| > 72>q,
| 213 —e®| > 88>q,
| 288 —ebl| > 9x102>q,
| 2277 —e192| > 8 x 1080 > ¢,
|2365_e253| > 9 x 10112>0£,

shows then that the minimum of ® is attained for ¢ = 3, ¢; = 2 and that
I 9a_ eal |>| 23 _ 2 I

for all pairs of positive integers 4, a;, with equality only in this obvious case.
I am greatly indebted to Mr D. F. Ferguson, M.A., for determining by the same method
the following extreme values:

|3a_ea1|> ,31—-—e1| = 0-281 ...,
|42—eu|> |4l—el| =1-281...,
|5a_ea1|> |51—e1| = 2:281 ...,
|6a_ea1|> |61—62| =1-389...,
|7a_ea1|> ;71—e2| = 0-389...,
| 202 —ea | =] 201 —e? | = 0-085 ...,
lgoa_eall>| 902—e9| = 3-083....

CHAPTER 4. THE LOGARITHMS OF INTEGERS

26. Let f be a very large positive integer and 4, an arbitrary integer. On putting f; = 1
and ¢ = 1 in theorem 5, the following result is obtained :*

If m=[10Inf] and n=[3ln(m+1)]+1,
then |Inf—a, | >{2"(Inf)m-1e3m+hni-1,

In this inequality, 27(Inf)m 1< (2Inf)m <L el0n/dnins+n 2)
and e30m+1)n < @3(10In £+ 1) BIn(10In s +1)+1},

Therefore, for sufficiently large f,
|Inf—a, |>f-¢inns,

where ¢ may be any constant greater than 10+90 = 100. In the present chapter, we shall
improve on this estimate by a slight change in the computations of the last chapter.

* The condition ¢; <2 In f of the theorem may evidently be disregarded.
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27. For this purpose, denote by f'a very large positive integer, by «=>2 and £ two positive
constants to be selected at once, by m and » the integers

m=[alnf], n=[fln(m+1)]+1,
and by a,, 4, ..., a,, arbitrary integers; further put

1= _max (|(nf)—a]).

,,,,,,

The definitions of m and » imply that
n=yln (n+1), n>%
for any two given positive constants y and J, provided only fis already large enough.
Therefore a trivial change in the estimations in §21 and §22 leads immediately to the

inequality 240,1, 1

a B 2 (m+1)n 1,1,2
9< (E——cx*ﬁ) +A (ea+ﬁ’+'y /32)m+ D,

1.1,2

It is then clear that A> (e3+/7+§ /32)~(m+n,
246,1, 1
provided that a=e * £ 2. /8.
Choose now a=10, f=1.

A trivial calculation shows that
Coo2,1 1.1
a>ex B8, (e B [32)%F <2,

28,1, 1 1,12
and so also a=e* £ 2 /8, (e £7 /32)% <e?d,

if only y>0 is sufficiently large and 0> 0 is sufficiently small, as shall be assumed from

now on. Since m~alnf, n~pflnlnf,

as f tends to infinity, we have thus the following result:

THEOREM 6. Let f be a sufficiently large positive integer. If m = [101Inf], and if a,,a,, ..., a,,
are m arbitrary integers, then
max (| (Inf)f—a,|)=f2min/,
k=1,2,...,m
28. With a slight change of notation, denote now by « the integer nearest to In f, and put
A=Inf—a,

so that —i<Aa<+4

and therefore max (Inf,a)<Ilnf+1 = {1 5157 In/ Inf.

(ﬁ—llllr{}k_;“k — (Inf)e a(lnf)s=2 4 .. +-aF-1 < k{max (Inf, @)},

whence, for k£ =1,2,...,m,

(Inf)*—a

Inf—a

Then

<m{max (Inf, a)}n< m{l + ﬁgf}m (Inf)m.
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ot

S 1 m 1 10Inf
fnce m = [101n/),  {ttgpf <lew(gry)) e

Hence m 1+—L " Inf)m<101Inf.e® (Inf)10Ws < (Inf)11ins
2Inf

as soon as f is sufficiently large. We find then that

and therefore |Inf—a|>f~"WInf max (|(Inf)r—d*]).

k=1,2,...,m

A A

On the other hand, max (|(Inf)k—ak|) >f-29Inlns
k=1,2,...,m

by theorem 6 applied with a, = a* for £k = 1,2, ...,m. We combine these two inequalities
and note that the resulting formula remains true even when the integer « is not the one
nearest to Inf. Hence we find:

TrEOREM 7. If fis a sufficiently large positive integer and if a is an arbitrary integer, then
l lnf—a l >f—401n1nf.

The exponent 401Inln f tends to infinity very slowly; the theorem is thus not excessively
weak, the more so since one can easily show that

OF

|1nf~a[<}r

for an infinite increasing sequence of positive integers f and suitable integers a.

29. By means of the last result it is possible to determine a lower bound for the fractional
parts of the powers of e.
Denote by a a large positive integer and by f the integer nearest to e?; therefore

et—i<f<e*+ 3.

A

By the mean value theorem of differential calculus,
er*—f
a—Inf

where « is a certain number between ¢ and Inf, hence e* a number between e* and f.
Therefore

e,

ea>ea_%>%ea’
whence |e*—f|>4e?| a—Inf|,
and so theorem 7 implies that

l ea_f | >%ez‘zf—401nlnf — %Ca e—401nflnlnf.

OF

Here f<er+4, Inf<a+In(l+je 9 <a+tie,

‘ 1 —a l_ —a
and lnlnf<lna—l—ln<l—|——27le )glna—l—Qae .
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308 K. MAHLER
Hence  Inflnlnf<(a-te-9) (ln a+%e““) — alna+}1n (ca) e‘“—{—a% e-2e,

and ﬁnally %eaf—401nlnf> e—40alna

as soon as a and therefore f are sufficiently large. Similarly as in the last section we may
drop the condition that fis the integer nearest to e The result is therefore as follows.

THEOREM 8. If ais a sufficiently large positive integer and if f is an arbitrary integer, then
|et—f | >a 40,

This estimate is rather weak, but it does not seem easy to obtain any substantial im-
provement.

I am in great debt to my colleague, Mr G. E. H. Reuter, who read through this manu-
script with great care and discovered several minor mistakes in the original version, and
also to the referees.
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